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ABSTRACT

Optinum non-linear filters belonging to Zadeh s class

are onsidered. Attention is restricted to those systems whose

present output is influenced only by a portion of the past in-

put. The input sigal consiats of a message and noise both of

which are stationary random processes. For this class of filters.,

it- is- found that only the second order probability density func-

tions of the message and the noise are necessary for obtarinng

the optimizing integral equation. It is asisued that the ampli-

tude of the input time series is bounded and takes on discrete

values at all times. This assumption Is not too restrictive in

practice since data supplied by ccmptera and devices using digi-

tal read-out are quantized. By subject)kg the Joint probability

density functions to a few m:ild restrictions, 1it is found -that

the optimiring inte:a'l equation xeduces to a system of integral

eqzmtlions of the Wiener-Hopf type. By virtue of the assumptions

made, the Fourier transforms of lae ke.nels of these equations

are rational functions. A method is &rveloped for the solution of

this set of si,.*taneous integral equx;ims and three exmples are

given.
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I. OPTD04 NON-LIN F'AR SM

1. Introduction

Broadly speaking, optimum filters and predictors are devices de-

signed to produce, upon acting on the pest of a time series, a vacue

which estites a desired value of some function of time in an opti-

mm fashion according to soce fixed error ,..riterion. The most con-

ventional optimum criterion has been the Least square error criterion.

Adoption of this criterion hs often rerialted in equations that can

be han~lrd an.ytically. When thc. i~y time series is stationary,

the classic work of Wiener I has 3howy, that the Impulse response of

the optimum stationary linear filter uhich acts on the infinite post

of the input is the solution of the WLe.!mPr-Hopf equation. Subsequent

to Wiener's publication, the subjec'z Lf optimum linear filtering and

prediction has been extended in winy -I-rections. Among them are the

work of Zadeh and Ragazzini, 2 ootor., 3 wnd Davis 4 for continuous sys-

tems and the york of Blum,5 Chang,,6 
and others for sampled-data sys-

tes. By contrast, due to the lank of' knowledge of characterizing

a non-linear system as well as the iziberent difficulty in any anlyti-

cal. treatment, relatively little work ban been done with non-linear

filters. Conditions under which op yamm filters for the detection

and prediction of signals are non-l.near -were studied by Laning' and

Urenick only for discrete data po .nl . They have considered the

case in which the message is a non-muadom linear combination of knovn

time functions with unmhovn coefticivnts: in particular, polynomial

functions were considered. On the ot,\er hand ZaOh9 has outlined

an approach which is based on the con tderation of a certain system

of classes of non-lianear filters. He biit derived a sequence of linear

Integral equations for a class of optimi \i filters and haa shown that

-1
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as the filter structure becomes more cmplicated, more and more in-

formation is necessary on +he statistics of the input time series.

A rather generalized result in optibm= prediction and filtering using

the least square error criterion was derived by PugachevoI 0 Te

condition which he derived includes all of the optimizing equations

as special cases.

Inasmuch as a linear filter is a degenerate case of a non-linear

filter, improved results can usually be obteined by using a non-linear

filter. However, we often find in practice that the amount of

statistical data necessary for the design of non-linear filters far

exceeds what is available. In addition, the complexity of the strnc-

ture of the filters leads to problea that are unanageable by ana-

lytical means. In order to circumvent this difficulty, it is con

practice to make simplifying assumations about the characteristics of

the message and noise processes as we t, as to restrict attentioa to

a certain class of filters.

'Be optimum filters to be considered in this report lie within

a class of filters whose input-output relationship can be expressed
as

t

y(t) [x(t - ),cld- 0 < t < T (1.1)

Systems chaxucterized by (1.1) have been designated by Zada 9 as

constituting the class rtl, is class in a member of a sequence

of classes of non-linear filters desiated as V ' ... classese
Th class of ltnear filters is a subclass of n. Consequent.3,,

*very class in the herarchy includes the class of linear filters.

To cite an example in this class, com-idar

K(x(t - I),I] - f[x(t - r)]h(T) (1.2)



terv- rf is any function of its axesent and h(T) is~ theW unit

24qflse responsec of a phyically realizble linear filter. Thwn

4.

yf~ x~t-i)]h~lr)d% 0 < t <s
0

.epresoenta the Output of' v System, itichb ctnsists of' a os & rrauge-

tient of an rirryZepro mowmory, :acn-2.aeix device foi2-.'* ty a

*.1anar fiLer of' asry size T.

Ais data s~upp:lied by computers and &livices -using digitl.-l-.' readout

-&re quantized, -'.t Lxctul logical to linororate this 'otato in

tha dosign of £flIters The foflowing analysis ;Ahowa thzO; tU.O, a

m-i..infn to can be ufted -yutfu l whe the tor of tefle

.et Ptb1". ppnc that the-- 1"npr: x;ngnal :t.b? VLW ctl

;vo 'ndej-.ePrx-u omat-ioncry rsn rcxc c-n ---- xwmeiz', thu x~v)p

aR2... thet uzlsi).iaie nkt,

e.nL+ 1;(t)

'run- Imroblen 'i to fnd a filter wJoji~t ther cJ~nsc SI 'C' oh

&.he 'liAftt errr betrven th? actiJ ot'p ircmn th!.e :Clt a'

ksttt I,, LuS-c AZs siinitac i ct Z3 Lklt Cb2Ir -1

Sthe d"4 >c't Otpt'ct \42x .,c q is z~~v YoctjAon o~f %bS t fl3

c±7os v c' *eanl :t'- 'cv Vr t Ii t; in& Tt herr

%4!k I~ts m.rdcts nd Lie act; nr'

~~~~. ~ q :.y" 'fmt ~

vIc o i. ugeu In,...,.r{J 4

Z W:'.:c x-n cv? no' o



As in Wiener's theory, It will be postulated that the predictor is

optimum when 1) the ensemble man of e(t) is equal to zero for

all t, and 2) the ensemble variance of e(t) ie a minmum. Let

us denote the ensemble average by <> The filter is therefore

optimm when

<(t>AV 0 (1.6)
and

1r (1. 5), Ve have

< 2(t)>A, - K Kx(t -

T

-2 <oK~x(t--.), ]ldr X q~m(t~ia 1>
a AV

Upon expansion, (1.8) beccm-es

AVo o- - K(xl" ) >< K(x2.[) >< (x _ ,.)d'ladr d'ld

-2 1. L K(x3., r1 ) >< q(m(,) X< 1)(x,~, m)d'rdmndx 1r

-00

* We assume here that enough time has elapsed since the signal started;
consequently, the upper limit of the integral is replaced, by T.
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where in (1.9) we have circumvented the lengthy notation by letting

X, 4t - )

x2 ' x(t - r)

M - (t+a)

P(xl,2 ) - Prx( '- , x(t - ' .); - -r2 ]

- joint probability density function of x(t - r1) and

x(t - T2)

p(X1 =,) - r[x(t - T2 ), M(t + a); +

joint probability density function of x(t - TI) and

X(t + a)

P(c -p[Z(t +a)]

- first order probbiUity deisidy function of m(t 4- a)

Our a-m is to find the kernel Kfx(t - 'r,] which minirazes (1.9).

Tbe minimization of <e 2 (t)>AV is accomplished by the usual

technique of varitional caic is. The variation 5I corresponding
to an sdmaisiblp, variation 05K "n K is

~2 ~8X( -)r'K(x 2 ,c 2 ) >I' P(Xx 2 d r' 2ddx
6-00 -OD 0 0

CO 0 0

- q( .
(1Lo)

By valuatin - an sett:ag it to zero at 0 , 0, we obtai ,

for all. aftissible Wx'T)



T

) oK(x2 .2 ) >.p(x,x 2 ) i

CO q(_ ) < P(-, 0 (1-

Mbe desired. o~ptimizing integral ciatton for the kermel -K is

therefore of1 tIhe form

0 >~~'< P~ml)dmc = Kx2).r2) >< xl2-2

0 < - < T (i1 ;;

In order to e-hb that. (1.12) gives a true rinimum rather then a mare
stationary aclation, we proceed as fo.Uffso Let. us consider a

filter Qx,v) which is different fro K(x,'. Inspection of (1,9)

shows that tbe mean square error resulzing fro usl the filter

q(X,') can bt im-ranged to mead

00 c K(x 1 , 1 )q(m.) X ~cldrdcx
-C -co 0

cc im 0 0

C< P(x,, d d-r dxldx2
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which is greater than or equlM to the man square error resulting

from using the filter K(x, r), namely

CO q 2 (%)p(ina)dMO, - OD 00 K(x,T)q(mc6) >< p(=,,,xldrdmdx]
-o -Co 0

since the last term in (1.13) is non-negative. Oonsequently, we

conclude that the stationary solution does, in fact, give a mini-

== mean square error.

3 Qantized Ip~xts

As mentioned in Section I.1, the amplitude of the input time

series may be assumed to be bounded and discrete at all times in

view of the nature of the measuring device. This is illustrated in

Figure I, vhere the observed Input is denoted by x*(t). It is

noted that no asumption is tade regarding the amplituies of the

contintious processes a(t) and n(t). Our analysis includes the

special case in which the amplitudes of both the message and the

noise processes are bounded and discrete for all t.

m(t)

x(t) t t to the

EM'E Ifilter

U(t)

l&. 1 Bocking the Actuul Inputs: x(t)

Is a Qlmtized, * 1i-contixouS~I=
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If -v let the nmiber of the amplitudes of the input sigal be

2N, then the joit probabl~ty dpnsity functions p~j x1) andi

~P,0aac) cmn be LeAjwssed as

P(! X) I Z Aj -r!)63 - -ci 5 cx*
i-A J.-N

ij 0 C1 -'(11

and

431
P(,x) - :rkm,,; 'yx , )X - C J(1. 16)

j is the prcbabillty iat k.-k(t T- qul

C ad V- t T,) equals aand tf~ f±j (;,rja)dnkx denotbes

tbh- probablity tiaat x(t-rl) eaualz CaI tand mt4a) lies between

j~i and wCA Siubstitbti (1-15) and 'f't! G4 iuto (1.11) and equw'-

ing the correisponding coef'fIcI#,nta of the fkta antitons assoaiatei

With X w' vteFvz

a ~+1 T ~ c)>

'93r iairbitiary A1  (I v and f y?.athe, Siltaneous

gwi. oV :ntagrvl eqations ix 2,1. is fx- too amp:lex for any wm-

J,;ticalJ aolurti67fl I ftt; it is ~Inpbabic that a direct solution

ecan ~w be foand. Sn order to obtain - rosionable solution, the

foLow:Dn-g asnmt~xIions regarding the probdbility density functions are

mmde:
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A. e Joint probabilit-y denaity function of the sage and
of the noise wre eyuuotrical vi h respect to their argumsnts as
veil as epwatrIcal with respect to the origin, nevely

Pn(n 1 ,n 2 ) -p.(n,,nl) - (1-19)

It fOllows that P~xx,) vtich is giv~n by

also has the sam proerty.~ on the other hand p(Mai xl which is
given~ by

Is OWZ lyMIa1trical about the origi. In terms of the e~pessions
in U.1i6) aid (1.17), this assumption can be vritten syboleeltJy

- f~~~y~~c)(:L.23)

Tet us defim

f =(i2U ~
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Since <q(ScP>AV - 0 it foUOVU frm (1. 23) that

z *c -2-ic )(i)

B. 3br &11 ± &W J, the quantities [A,(I Q1~ T3,'
A1,- 3(I 'r17'2 I are m of a finite number of decavying e::qonentia3e0 *
It is the. IogicaL extension ct the usual aasuptIon tbat the auto-
correltica ftmction vhich Is givenu by

to the atma of expoientia functiOnjS

In view of assuuptio1 A, the optim~ filter can be zv.,resanted

bY thet "tx'uture ahown In FgUUM 2.

or

SELICTOR

~ Scbatic s~~.~t~aM of a Non-linzwa Filter

Th~xis Is a weakew condition tban that; wihrequizes ai1. A," ( -K1T

w,- be e:cayiiw expoanttaU.:)
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In mg. 1, we the =nit Ips responses of liearfilters The eccm llea when

Km k f o -l .1 and k. (1.26)

To sac the validity of Mg. 1, it is nocsary to ahov that

'.1 -- r-,,, - 1, 2, ... , N (1.2)

ro (1.6) ,t co.,, ue that

,:,t).>A fu 0 (1.28)

Conseqtien2~y

,,'~*t- ),] 0 (1.29)

I*t f the probabiLity the; x(t - takes on valu c

Thei.

fj f a 1, 2,, (1-30)

vhich can be deduced from owa inevicm aurmptioraS on the process

N
efj ~ xo.T (O,10

In oxder for (1.31) to hold for my set of fjsatiefying 1j fj
it is racessebry that

X ,K+ K(c T~) 0 0 2?~ ,2, ... , N (1-32)
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wbic agees ith (1.27)o Eq. (1.18) can now be vritten as

z (AC,( 1 'aI) - A4![ 1 2 ]>~~~ 2 d~

JO 0 < 0 T; 1 (1o33)

By using (1.22) and (o25), it is seen that N of the 2N1 equations

in (1-33) azv' redundant. at us rew T,. an r 2 byt an

T respectively, and let

wj(,t-1) - A-3 ( t-tl) -(1o3)

)(. , (K1-35)

Eq. (1-.7~) fialyeduces to

N Tzi(ti) - E vio w(I t"T J)5,( -r) d- (1.36)

J-41 L0

0< t <T, i-a1,,...,N

Prm (i;9) we see that the ninlam mean square error is 6tven by

N T
3 <6>A ~~" (<m3t) ]>AV" - (M O ¢(t)dt (I*.7
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4. Method of Solution

it was shovn in the previoA section that w1J (1 rI) is the
sum of a number of decaying exponential functions; hence its

Fourier transform, defined as

wj(x') = w )j(l e' dT X - 2ycf (1o38)

is a rational function of X2. Suppose*

D P (%2)
Q(X2)

-Where Dii axe constants, Q(7, ) is of order d and Pi,(%2 )

is of order nj (n < d). ie shall derive in this section a

necessvry and sufficient condit ion under which a unique absolutely

integrsble solution of (1.36) exists. K,(t) is abo.lutely integrable

if

T
T frJt~ldt< o for j ( 1,.40)

which is the usual stability condition for linear sitana . A system

is, fov our Arposes, defined to be stable if all bounded inputs

result in bounded outpits, Oar res .t vill aLso Lndlcate that a

formal solution can always be o.btained iZ the restriction imposed by

(1o40) is renor~ d Me aiproah here is first to transform (1.36)

to a s~.mpler system of Integral equationa. It is then z hcn that the
solution of the modified system of lztegral equations does, in fact,

satisfy (1-36). When convenient, the fcoLlaidg no &ion will be

used.

* The cumon den.minator of 02! Tw.hj%- ha bfen u od.



[I] -n n N x A square matrix whose elemnts are Dij (this

tatrix is assumed to be non-singular)

f]-' - nverse of [D]
-t a column matrix whose elements ari ti functions K (t),

zk rl - a column matrix vhose elezmnts are time functions.

a a column matrix whose elements are tim functions,

,e% of1,2 1 o..,2
of - inverse i.nurier trenaonioof

T
w( t-K( dT1 - a colun sairix whose elemets are

0 j 0

2j

operators, ±D i dt

Lp.r; yZt4 be any solution satisfying the following system

of diblerential. equations:

d2

a&d. let the modified set of i-ate~ral equrations be given by

T

wfe winl now st.ow that the solution of (1-42) also satisfI'.as (1.36)

To see tbio we pre-3mltiply both sides cf 4-4J2 ) by [Di , which

becoms

(~~~(it- ~ r'DI" y( 0D' t O<t < T (A
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Operating on both sides of (1.143) by ED P (. .)Jyields

T2 d2
E---_ - [DP(- t2)][DV- ZLt'

o < t < T (i.44)

The left side of (1.44) is a column mtzix whose elements ae

N d2

3.). 0 ± a 1,2, ... , N

which, as shown in Apendix A, becomes

Bquation (1o-44) therefore reduces to

N T
E v a( -rI),-~- zi(t~a); 0 <t <T

Jul 0 il,,...,N (1.45)

w.ich is, in fact, (1-36).

In section 1.2 we have shown that any solution (if it is not

unique) of (1o36) will give the sme mean square error. It is,
therefore, imaterial whether other solutions of (1.36) exist which
do wat satisfy (1.40). Newertheless, as we will show in Appendix C,
all solutions of (U.36) ae neceasri y the solutions of (1.40).

Wa shall now investigate the solution of the modified systm of

Integral equations (1.42). It is shown in Appendix A that if a solu-



:L6

tion exists, it satisfies a set of simltaneous differential
equations

dt2)1 0<t<T(.6

The solution of (1.46) can be -itten as

?2- )[D] '  41t40 0 < t < T (1.,47)

dt

Since the information taming to the derivatives of gjtl at

t = 0 rind t T is not Amaludod in the derivation of (1. 46), we

find that certain conlitions or, Yl , are necessary in order

than the!9) so obtained fxi-s (i.47) do satisfy (1..42). Those

conditions vre obtained by substituting (1.46) into (1.42) and solv-

ing the resultant equations as on identity. Mhe developowt parallel&

that apAeariufg in Apenix 2 of Daveapomt and Root. I

Let us first estabi/sh a useful result. From the dfinition

Of '^Vt'), that Is,

ki O Pjxt
2X--'M -- CA .8

we obtain the corresponding diff rthrial equation

u~tj b(t)

in Particular. let

2 d
In ) ur-t:q.x) 2ar( let,

IWO)
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Sq. (1.49) an be wvmrssed smst

E (,I) q"0 2k) t

This 2vlltion will be used laber an.,

using Ii5o), zq0 (1.46) can ba rewritten as

d/
[DI 121 &,-)~ q2 ~ ) XL 0 < < T l5,

Nltilyin both sides of (1.52) by t-xt)and integrating

the resultmnt expression from 0 to T, we obtain

T t d
o Im9O

T d
+ I (_,)k q 2 P

t k~aO

<t

Here we have sepated the rang, of integXrtion into two regions;

for 0 < t, the kernel is while for tT' < T,

the kexr.w.l is *(v- t).. After Integrating the right-hand aide of

(i.53) by -Arts 2d tim and makirg me of the Ioperty tht,-*

we are left with integrals

k A _. I)d

0

** t;) dmotes the 2kt" der..1vative off t

S~ee AVyVn lLx A,
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unintA-,rated as they occur at every other step. In addition, teros
involving the derivatives of Z at t- 0 and t - T are

carri d over fron each of the 2d integrations.

It is shown in Appendix B that the right-hand side of (1.)
can be expressed as

2d2d
. w ( .t) -+ .

t )Z_ _ - (.95

T d )k "V(a)(
+ E, (-I) qLv (t-r'y(k)'

0

vhere I and Z. are colun mtrices vhose elements are Yi
and Z,2 (±ml,112)....N). Y1J and Z, are linear combinations
ofthe drivatives of yi(t.K) (i-,2,...,N) at t=0 and t T
defined by (B.8) anid (B.9) respectively. By (1.51), the sun-

notion in the lost integral of the above expression Is ib(t - r).

Same, using the property of the delta function,

0

Sq. (1Ms) can be reduced to

(D] i V( t- O )di] - zy.kJa1+ E V W

2d

we observe from (1.56) that in order for the solution obtained
from thae differential equation (1.46) to satisfy the systmw of

intega equ s (1.4e), mass shold be provided to tawo cam o
the a&litionul tezUW
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2d A ( ) 2d

Let us ad to the solution of the differential equation two terms of

the form

b 1 e(t) + c 1 5(t - *

Vhere b.,I nd c1 are column uitrices consisting of elements bl ,

CJf / -- j l,2. .,S. Um :t can be easily shown that (1.56)

is identically satisfied if

f--i
2d

and

w ere soanH are cl matruices defined by

a-(Dib (.)

ana

H [D(DP1 (1. 60

It 'will now be, sbowzi thAt a necessry and sufficient condition

that the solution of (1.36) be wique and absolutely Integrable is

that obtained -Crau ,'1.I4!) have N(26. -- 2) undetermined con-

stants. Mis ons that tie det-.rnlymt I X2 ) is a poiyncua
of degree N(2d - 2).

M 1is does zxyt violate F4 .10 (± ' I 5(t)~ I t - 1
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We note frcu (B81 and (B.9) thiu-t a nd Z '4 are iear

funcotions of yjt!!? and its sicesse~ deri1vativs evaluated at

t a 0 wid t m T respectilrely0 Let wi aap that Aka bas

1I(2d - 2) undeteralned coefficienta. Tben both and Z canl

be expr~ssed as linear cobinatiLons of' the sow rnmber of coefftciet,,
Fr~~.mz (14~ ~ See that C~en be prsLda

d -j

isal

IT 20C11OVS thnkt

d A 'Xj twv-~t a t > 0 (1.9K

Upin eqatting thet crtrregpoiiJng coeffi~cients of e . 1,2, -, ,

in TrqP (1-~57,), and iO8,we 6btaiz PM-~ algebraic squations.

Since the 3-vinber of' unknowns is alxo 2Wd -- f~kl-d 2) of iich

belong toT~ and Z and the n1zzg2N~ aze contrited by

G "n 9 a unique solaUion can w~ys be dbt.:ed 0a.

So' far, vp have -only considered4 thc. fini te mery f)t-tr. The~

resu.lt, hwov r, can be apl3ied dI-reat~y to the Iinite amaury filtC":,

in i&.Ioh T IS infinite. For thnr wv ~ r ry filtel., the sta-

litlity,, cv&-Itlon becows

Eq. 1O63 impies that

A. The rw~ts nf' the eq=ation

cannmot I-i! pkiri!Ly i~al, and
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B. The tetms In KQ which belong to the roots of (1. 6 4 )

that lie in the lower half of thbe X plan- should be discarded.

When condition (A) is satisfied, a unique solution again can

be obtain ed In the infinite rmsnj case, it is necessary to use

only (1-57). The number of equations as well as the number of unknowns

are reduced by a factor of 2.

As a final rt ark, we see fz'o oar result that it Is not neces-

sary for _ q to have N(2d - 2) u2teined- constants If the

stabilityr conditions -- (1M4) for the firite Memory filter and

(1.63) for the infinite rmory filtor -- are x'vedo In this case,

we can aL4Vs obtain a formal solutin by adding delta functions and

higher oxder derivatives of delta functions to the solution obtaihed

from the differential equations. The successive derivatives of

delta functionm ae defined by

As an eimsple, consider the solution of (136 when all 10
It can be shown that (1.56) will be idantically satisfied if we

add to tthe solution of K~t obtained fron (l147) t.he adiditional

terms~

2d 2d

A-1a l .2

and choose b and c so that the folloing equations are satisfled.

[D]b Y 3.,2,"..,2d (.66,)

and I4 
. 7
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Te bysical significance of the bigher order Impulse functions is

that the filters are required to perform differentiation operations.

At least two procedures can be adopted to obtain the solution

of (1.36). For the numerical exmples in the next section, the

following procedures have been adopted.

1. use 1-41) to obtain the hoogeneous and the particular

solution of ZA!.),.

2. rrom (1.4i7 ), ve find gq
3. Add to gtI two terms of the fora bI t(t) + cl8t-T)o

4. Substitute the solutions obtained in steps (2) Za (3) above

into (1.36) and perform the integration. nie unspecified constants

are determined by solving the resultant set of algebraic equaticon.

It should be notad that X~ obtained froma ste-ps (1) and (2)
above is essantially the solution of the set of differential

equations

[DP(- 11 Ut Q(_d 2

I. In this example we considex a prediction problem In the

presence of noise. Let m(ta) be the desired output. The message

m(t) is a random square vave taing o the values TL with equal

probability. Ihe probability density of the time duration betvfen

t awsitio ns, , is Ile "01 -C (a Noisson process). The second order

probability density function of the message is given by

p(m, * = - - " 11l1 2 i)[(1-1) + (-11)]
+ V1 + .'+ (-,-.) (1.69)



where (i,,) d±naotes 8(m1 - i)m 2 - J, . n other worex it is

the point vhere m.t - l) takes on value I and m(t - 12) takea

on value J. The probability density of the noise, n(t), in of the

z. form idtho. replaced by 1. We shal1 choos 1 2,

22

By u.oing (1.20) and ( .21), we first obtain p x,x2)  and

{ x u) ihica upon substituting into ( l l2.2) yields tuo einultameuv

integral eq utiona inspection of the resultamnt iategral equations

Xhows that KO L) - 0. The integreJ. equati.on for c( t) becomes

Tbe Fourier transform of the kernel ir,

2,M + 64

Frmx step 1 of the procedure, we have

+ e"P' 0 < t T

dt
2

Therefore,

-F~t P" +I e-2t 0 't<T1-)

Step 2 yields

A4t %rt t_ I. f-

K2t'- (12 ±1il 132'

We now add to 2 t,, the terms bll6(t) + Cllc t-T) und substitute

the complete e.rassion for K2(t) into il C)}. Assuming T -

100 milliseconds, we find that the integral equatinn can be satisfie&
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when the uknowns are

Q11 -183 ><o-3 ; b 11 a4o x o-3

%2 -3 < 1o'3 '21 = 63 0)<O- 3  (17)

Hence

K (t) 0 o,~
12t) 0.42e+ O.Oe~t + 0.426(t) + 0 0O635(t-0.1)

0 < t < 0 .°1 (1 76

K2(t) '0 for t>o

Since (t) 0 , the optimum filter takes the form of a linear

filter whose unit impulse response is . for 0 <t -<0 and

is zero for t > 0.1. Tbis is in fact the optimum linear filter since

(.?0) is actually the modified Wiener-Hopf equation where the upper

limit on the integral has been changed frc 0o to T.

2. Here we consider a pure prediction problem, namely x(t)
mt). The desired output is again a(t'a). We assume that the second

order probability density of the zessee is

P(xlx2)

__ --1 .- + 1 e T~ll - . - r2 - 1 1 e-(l42)l t - I][f(2,_-2(1,.1)+...,1rfl.l,1a)]

4-16. + e- t ' 2  Ir~L

+1.[L - eell !'02ATlI'+ -"e "r - • "(I2 2-f l [(2,1) -(.,2)+ -2,-1)4 -. ,-2)

+16( + e'1lr2"r1I +e-P2 I'T2-'r]J.+ e-(ftL.o2)1 (h

(1.77
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This situation arises, for instance, when the message is the sum of

two independent Poisson processes whose amplitudes take on the values
1 and t 2 respectively. The second order probability density

2 2
function of a Poisson process is of the foru given by (l.60).

In this example, let us allow the filter to have an infinite

memory. To simplify the calculation, we choose 1i 1 2, P2 1 0.

The prediction time a is arbitrary. Let us denote e-a  by k (0 < k
< 1). Upon substituting this information into (1.12) we obtain the

following two simultaneous integral equations.

kCO [+e,2ett e + e-lt. Pl()d
0

+ Ij (-21 t-+ e-t-jr2Td
0

0

+ e2 [e2 rtI + e It.' I ]IK2()dT t>0 (.78)
o

It is easily verified that the solution is

K1(,r) O (k - k2 ) 5(1r)2

It is observed that the ony solution for vhich 2(T) - 2Kl(r)

[a linear filter] is when k - 1, which corresponds to the trivial

cais of zero prediction time. 7cr any finite prediction time a, a

non-linear zero memory filter results.



P3Y usLng (1,'1.-7,), thi normalized man squaro. ei.-or can beeva

at,,%d asi

2 >~. 1 2. ,~2 t '. 3  -tJ t~

+ ~ ~ k 2 t + -~t~td]

ibr the a~nke of caqI~w~'ion, the- wan nrquare error of the lixrt~ir

fllte*r is als~o obteined. Thks witocorraIlation. fzncton of the mes-

sage is

Thei Wimer-Hopf equation becomes

2t 2 -t OD -
. e 4 'I ~ t "jh(Fr)d t > 0 4.82'

The soluti on of this equation it. fctind to be

hfT - o1(k-i 2i6t + 0 39 + O.-86lkibft

'h corresmdne normlized m~an sqaa'e error is given~ by

JN. I AV 2-.. Vt. >< he2+ +b 4 idt

I JLkinear 0

-~ 0.012k4 +0.276k'. -O , M.2kj

-as: Ctiof of (1.8.0 and (1-6) Alawti that" 1.8 aoelwavs,

greater th~.ju ort 7qual to (jL.30,'; thiat 1E
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<.2> 'j sj E 2"'j 0.088k 4 - 0.17605 + o.OeWic

- o.o0sk2(- k) 2 > 0 (1.85)

The non-linear zero memory filter, therefore, always gives a lower

mean square error than that of the linear filter. As a numerical ex-

zple, let k = 005 (a - 0.694 see) o We find

t< 2 > AV I = 0.819; I AV 0.781 (1.86)

Linear "1

or, approximtely a 5% inmrovmento

5. Fr puxrpses of illustrating the procedures outlined in

section 4, we consider here another example of pare pre&tctiono Let

the desired output be m(tr+a). The amplitude of the input process at

any time can take on any one of the four values .+1 and t2 with

equal probability. The second order prchability density function is

(,lx) u 1 e

+ -

+ +-031 ,-e%.' 1-'2l+ - -+ rl' -21)

Here, we let 01 32 1,3 - 2 and we denote e by k. The

optimizing integral equations are
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5ke - k2 e- = T [e'lt-,l- e21It-!l,(,)d-r
0

+ e [ -Tt- e-21kt- e|]

+ to<t< (io88)

The Fburier transforms of the respective kernels are

wzllX 2 ) - w2(\) = 10(%P +2.8)_ (1.89)

nd wI x) - w21(X2) , 2

It follows chat

CDI and [D]I j (1.91)r2 100 .9 -2 1

Follow .ng We above entioned procedures, we find that (1.41) in our

example Is

f -t _32e-2t 10 2  a2  0 2-
5ke -2e 1" (- -+2.8) 2(- +24 ) 5 10 -

12 2 < 1 Jz.7k t+ k~e2 2(-+2 0(- 2 +2.8d2i2 6 39 Y2

0 <t <T (1.92)
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wbch after sinplification becmes

d , d . ~Y2  J
5ke -t -k 2e"-2 -26 dt t+ 6y o -

7ke " t + k2_e-t4 
_ _ -2

Me solution for L() is found to be

y1 (t) -QeF-t+Q 42t + Qet + Q1e-2 + YketQl~e 3 (1-94)
2 2)-2t IL -t

y2(t) - Q04-. 4- + Q3 Lt + (94 5 k)e +

Proceeding to the next steP, we obtain IC't) frm (1. 47):

A + ] 1 - 2 Y(t)
dt dt 2  

-2 10 ~ (~

which after siizlificatiom becomes

x1() Ble2t +l- 2t1

"2(t) e - B- e econstants

Now let us add b 31t(t) +.c U (t-T) A4 b21(t) + c2 1 8(t-T) to

K(t) and !C(t) respectively and *stitute the amplete exprssio

into (1.8r3. We obtain, upon letiang T - 100 ,dUiseconds,
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El = -276<10o 3 (k-k 2 )

B 12 - _M 31 >e-1O 3 (k -k2)

b (1293k - 2931?) >< 1 3

b 2 = (1707k + 293 2) 1o-3

c M -37.21(k - k2) >< -3

l= -cu (1,o7)
a21 ' 11i

It is c e r that 12(t) 2K.(t) (excluding the case where k = 1).

Consequently, the optimum predictor for this problm is always non-

linear. It is interesting to point outt that in this particular example,

one can also obtain the s solution by solving Just a single inte-

gral equation. By adding the two equations in (1.88), one can

imediately obtain the relation that

p(t) + h (t) -. 3000k >< 10X O (t) (log;

Upon substituting (1.98) into (1.38), the two simultaneous equations

can be reduced to a single one.

The normalized meau square error for this non-linear filter is

i<e2 >AV 1- [3-nl + Pk3 + k"]  (1-99")

Correspondingly, we find the normalized mean square error for the

linear filter to be

1 E A- 1 236-1k + 380- O+.lk1 (1.100)
linear

We observe that the difference between (1.100) and (1.99) is alws

greater than or equal to zero; that is
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2 2180 + 0 29k ' ]  2 >< (1

( 0.9k 0. 1 k+ 9k )0 9k -< ( k2) > 0 (~i

Consiquently, we have shown that improved results can be obtained

by using a non-linear filter of the "l I class in p2 lce of a linear

filter. The amount of improw ent depends on the problem at hand.

For the particular example we have chosen here as well as the numeri-

cal values we have assumed, the improvmint is negligible. A k = O,,5
the improvement is about 0.15%. Inasmuch as there are five para-

meters involved in this example (%l1 12' PY a and T), it is

unlikely that any general statement can be made vth regard to their

effects on the mean square error without firut obtaining an explicit

expression in terms of these parameters.
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II. MULTIPLE PREDICTIONS

The formulation of problems into a set of simultaneous inte-

gral equations occurs in many fields; for example, in the study

of radiation and wave propagation involving quite general boundary

conditions. 12  One problem which is of particular interest to us Is the
synthesis of linear predictors and filters for multiple time

series. Briefly, the problem is as follows:

Given a number of stationary time series,

f1 (t) - Mn(t) + n(t)

f 2 (t) ' M2 (t) + D2(t)

fk(t) -nk(t) + n k(t) (21)

we wish to find a set of linear filters hii (t) so that the sum over

all inputs j (j - 1,2,...,k) of the outputs of the hij(t) operat-

ing on the past of x,(t) + n,(t), respectively, is the best approxi-

mation in the least square sense to mj(t4a), (i 1,2,...,k).

Specifically, let I - 1. Our aim is to find bj(t), (j - 1, 2,. k)

so as to minimize
k T

- z fL(tl)N (T)dT (2.2)£,-l o

A block diagram of such a k-input, 1-output network is

shown in Fig. 3, where m(t) denotes the best estimate of m(t).

Wiener' has shown that the mnimum of (2.2) occurs when the

hl (,r) satisfy the following set of integral equations:

k T
X - (Tcf 7 o 013('o)hie(a)da

0< T< T; , -( 1,2,...,k(2.3)
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S(t)

f(t) ---- )

P A K-1 Pole Network

where x,(.) is the correlation function between ml(tcx) and

f,(-,),and 0L (t-c,) is the correlation function between fj(t--r)

and (t-17.

If we suppose that the Fourier transforms of the reslp.ttiwe nele

(:) ) are bounded at co and each Fourier transform can be represented

by a rational function in JX, namely,



Q(%2)

then the technique developed in the previous section is also applicable
I

for obtaining the solution of (2.3).

By paralleling the steps in Appendix A, it is seen that the

solution of (2.3) satisfies a system of differential equations

t'DP(A-) hg(t) -Q(- 42 0<Xt< T(2:5
dt2

where

A(t) =a colnm matrix wh'ose elements are hl(t), , 1,2,.. .. k)

x(' )= a column matrix whose elements are X (t+a)

1j= ,2,...,.k), and

(DP(~)]a k x k square matrix whose elements are lineardt d
operators Diji u -)

The essential difference in the derivation of (2.5) is that here,

it is minecessary to break the off-diagonal integrals into two separate

integrals when each differentiation is perfomed. This is because

only the kernels on the diagonal axis are even functiom of their arga-

ments. In other words

only for e - ,.

ITf a unique, absolutely integrable solution exists, that is, If the

impulse response of all the linear filters shown in Fig. 3 satisfies

the stability condition

T
30j"o~ t o; ,,.,k(-)
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the solution can be obtained by adding delta functions located at

t - 0 and t s T to the solutions of (2.5). The unspecified

constants can be determined by substituting the coplete expr sion

for h(t) into (2.3) and solving It as an identity.
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APPENX A

We wish to shov that the solution of

N T

71 (-) = F o wii(tt-rI)Kj()d 0 < t <T
Jl 0 i=,2, 0 ,N A-1

with the condition that

w (X2) 00 D~ PA.X2

satisfies the following system of differential equations.

2 N2
Q(- E ti~a E D jP, (- f- )Kvt A-

i2 Jul' dto -A

,2, .. , N O<t <T

On account of our assumption that wiJ (Itl) is of the form

wij = E Bke-PkltI A.4
k

it is readily verified, by taking the limits of the derivatives of any

order fron both sides of t = 0, that

viJ o W (-) ij (k)(o0) A.5

Equation (A.I) can be written as

z (t-4a) - E vj(t-,')K,(I)d + w.(T-t)5 fT)dT A.6

0 < t < T; i -= 1,2, -. ,N

Taki.ng derivativem on both sides with respect to t'tme yields*

wi,('X) refers to the derivatives with respect -bD the arguuent X.



A-2

+i N t
z~~ ~~~ ~ ~ 7-~z W, ~ 3 ( ) 3 (t')d ~r w' r -tK~

-= St 3 )~)TtK(rd' -

0< t <T ; i=l,2,...,N

Similarly

~(2)(ta . ' K l~ti)(o) + l 7
+ , wi (t-r) j (- T % w ) -t)K j(rd'4 A.9

0 < t < T; ,2,..

which in view of (A.5) reduces to

(c) N t ()t_) 2

ziJ-n 0t =

t <T = 1,, ,...,
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Since the even derivative of an even function is again an even func-

tion, we can write (A.11) as

(k) = (k) I tw(1t- ) K ( ) d  for k = even AoI2

=100 < t < T; i - j ,

From the inverse Fourier tranisform relationship of wij(X) , we

obtain

(k)(IX) 1 co (J%)k ej d% for k = even A.13
ij 2x ODQ(%2)

d2

Consequently if we operate on both sides of (A.6) by Q(- .2 ), the
2 t

denominator Q(% ) vanishes and the resultant equation becomes

d~2)i~tai Z Dii K (')d < Odt 2 J=l - 2 J(oe D

0 < t < T; i - 1,2,-..,N AoI4-

The numerator polynomial P J(k 2 ) can be built up by differentiating

the integral. Then (A.14) can be written

d2  N d2  T 00 exlt-,d

)z(ic F-DP(- Ei ij jt2 a j,~- $ e dxk
jt2iJ-1 ot -cc

0 < t < T; 1 -;2,...,N

or

N

dt2= D P (- -2)Kj(t) Aoi5

0h<t <T; i 1,2,b.., N

vhere use han been made of the relation

1 W



APPENDIX B

In tiis appendix we carry out the first few integrations of

(1.53) and show how it leads to (i.56). Let us rewrite (1.53),

J-1 o kO

T d k 12k)
+ j 'E (- 1 )k ~ (4~~-~'

t k=O

0 < t < T; i = 1,2;....,N Bo1

Integrating the right hanO. side of (B.1) once by parts yields

T

q, y (-1)k k X [ t wt-'d)0

d t (k-1
+ E (_l)kq > [Y >w(t-)]

k=l 0t
d (- 1 )kk >< (

+ S ( q1ik) (4y4i r >< w"(r-t))
k=1 It

d T (2-1 (r",%1
- £(..)kq~>< ~ -Qrv '(r-t)dr

k=l
O t < T; i 1,I2,-o.:N B-2

Since

A(k) (O+.) w (- )k(k)(0- B.3(-i ( (



Bo2

the terms evaluated at -r t cencelo e riinng term evaluated
t = 0 and t aT ame

d l 2 k -1 ) ( ) I ^ * tE (-') k  i[] wt

+ Z (-')k _ [y(2-4)(T+)] < (T-t)

k=l

i = 14

Performing the same integration by parts on the remaining intagrals

gives

d ky2k-2) ( 4)X

Z (-£ )k >< [ i 4_)k=1 10

d kt (2k2)2)('~ 2k % 4 k2( (t..,)d,
k-i 0

°I

The terms evaiuated~ at 'r = t again cancelo The two other tenrn evaltea
at taO and tu= r are

d T'

d k (2k-2) A(i)

- L q.) k  . y ( , )]w (r-.t) .-r i,...,W .6

kal



The reaining integrals are again integrated by W.,rts and the process

is continued 2d tiws, leaving integralb

k , y ( )2)(+ )d i = 1,2, .. ,,7

uniutegrated as they occur at every other step. In addition, we have

terms im th.e form of (B.4) and (B-6) left. over at each of the 2d

integrations. Inspection of B.4) and (Bo6) sbows that the te:nwl left

over can be put in a cmpct form, Let us define

I for even
2

and

Is= f or =odda
-for even~2

• lor even

Thel the t4otal nm'ber of te:r-i whiah are evaluatel at t a 0 aend t T

can be written as

2d 2d

It is note" that -i and Z, ,,c ceivs:ibi,.on , of I, Oe.i'-

v-ative of y, t-,-) at 57,. B y Aaixg sn fT (7j.'
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and (B.10), the right band side of (B.1) beccees

2d ")'-'1)(t) + z .- 1)(T-t)

+S y(~a) >< _J~ (-i) aw(2((t-'r I)dr .
0 b tha

which can be Identifed as the rght hand side of (1.56).
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A oEDJX C

We wish to shnr that if _Kftj is the solution of (1.36), it is

also a solution of (3..42) where 4k is any solution satisfying

the set of differential equations (14). Let the solution of (1.36)

be K ° tMen
2 TA

[DP(- 0 ^

4: ~tR DP(- )I[D]' cjg a.i&t2  1
O<t < T

where Zjt could be any solutton of (!.41). Let us introduce

gLt2 where

. , t w~i;r-)K(T.)dT]-

0
<t<T C0o2

It is .readily seen from (C.11 that

dt 2 '0 C ,

Yf we let

= y 29 a + [D](G(t

A
then we see that g.t., is a solution of (l1A4) if we o .wrate on

both sid-3 of (c.4) by (- )][D. Inspection of (1.43) ard

(C.l) shows that r(,t is the solution of both equations when

, wich establishes the desired result°
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